
Simplified Coupling Metrics for Object-Oriented
Software

V.S.Bidve , Akhil Khare
Information Technology Department, BVCOE, Pune, India

Abstract— Coupling in software has been linked with
maintainability and existing metrics are used as predictors of
external software quality attributes such as fault-proneness,
impact analysis, ripple effects of changes, changeability, etc.
Many coupling measures for object-oriented (OO) software have
been proposed, each of them capturing specific dimensions of
coupling.
In this paper, we describe and evaluate some recently innovated
coupling metrics for object-oriented (OO) design. We present an
investigation into the run-time behavior of objects in Java
programs, using specially adapted coupling metrics. These new
metrics seek to quantify coupling at different layers of
granularity that is at class-class and object-class level. For each
measure, we indicate the type of coupling it uses what factors
determine the strength of coupling, if it is an import or export
coupling measure how indirect coupling is accounted for and
how inheritance is dealt.

Keywords— metrics, coupling, object-oriented, measurement,
class

I. INTRODUCTION
Increasingly, object-oriented measurements are being used

to evaluate and predict the quality of software. A growing
body of empirical results supports the theoretical validity of
these metrics [1]. The validation of these metrics requires
convincingly demonstrating that (1) the metric measures what
it purports to measure (for example, a coupling metric really
measures coupling) and (2) the metric is associated with an
important external metric, such as reliability, maintainability
and fault-proneness [2]. Often these metrics have been used
as an early indicator of these externally visible attributes,
because the externally visible attributes could not be
measures until too late in the software development process.
Several of Chidamber and Kemerer's OO metrics appear to be
useful to predict class fault-proneness during the early phases
of the life-cycle [3]. There is a need of comprehensive
framework of coupling measurement which includes all
aspect of coupling. The components like inheritance and
polymorphism are essential for dynamic coupling
measurement [4, 5].

In this paper we consider the unified framework proposed
by Lionel C. Briand, John W. Daly, and Jurgen Wust [6].
Most of measures considered for implementation are from the
unified framework.

The following section outlines the related work for object-
oriented coupling metrics. Section 3 describes our approach
and the proposed measures. In section 4 we describe the
proposed metrics with all is features. In section 5 we
describes implementation details of the tool that we
developed to compute our metrics as well as mathematical
properties of the measures. Section 6 concludes the paper and
discusses the future work.

II. RELATED WORK

Coupling measurement is a very rich and interesting body
of research work, resulting in many different approaches
using structural coupling metrics [7, 2, 8, 9], dynamic
coupling measures [12], evolutionary and logical coupling
[10, 11], coupling measures based on information entropy
approach [2], coupling metrics for specific types of software
applications like knowledge based systems [13], and more
recently systems developed using aspect-oriented approach
[14].The structural coupling metrics have received significant
attention in the literature.

These metrics are comprehensively described and
classified within the unified framework for coupling
measurement [6]. The best known among these metrics are
CBO (coupling between objects) and CBO1 [2, 8], RFC
(response for class) [2] and RFC∞ [8], MPC (message
passing coupling) [15], DAC (data abstraction coupling) and
DAC1 [15], ICP (information-flow-based coupling) [9], the
suite of coupling measures by Briand et al. (IFCAIC, ACAIC,
OCAIC, FCAEC, etc) [7]. Other structural metrics like Ce
(efferent coupling), Ca (afferent coupling), COF (coupling
factor), etc. are also overviewed in [6]. Many of the coupling
measures listed above are based on method invocations and
attribute references. For example, the RFC, MPC, and ICP
measures are based on method invocations only. CBO and
COF measures count method invocations and references to
both methods and attributes. The suite of measures defined by
Briand et al. [7] captures several types of interactions
between classes like class-attribute, class-method, as well as
method-method interactions. The measures from the suite
also differentiate between import and export coupling as well
as other types of relationships like friends, ancestors,
descendants etc.

Dynamic coupling measures were introduced as the
refinement to existing coupling measures due to gaps in
addressing polymorphism, dynamic binding, and the presence
of unused code by static structural coupling measures [4].

III. PROPOSED MEASURES

In this section, we are discussing a framework proposed in
unified framework for coupling measurement for coupling in
object-oriented systems from implementation point of view.
The objective of the unified framework is to support the
comparison and selection of existing coupling measures with
respect to a particular measurement goal [6].

The framework consists of six criteria, each criterion
determining one basic aspect of the resulting measure. Out of
these six criteria we are considering five criteria for
implementation [6].

V.S.Bidve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3839-3842

3839

The six criteria of the framework are:
1. The type of connection, i.e., what constitutes coupling.
2. The locus of impact, i.e., import or export coupling.
3. Granularity of the measure: the domain of the measure

and how to count coupling connections.
4. Stability of server.
5. Direct or indirect coupling.
6. Inheritance: inheritance-based vs. non-inheritance-based

coupling, and how to account for polymorphism, and how to
assign attributes and methods to classes.

These criteria are necessary to consider when specifying a
coupling measure. Here we discuss the above criteria with its
meaning; also measures under each criterion are listed out in
the following discussion. Here we are trying to simplify each
criterion with the help of its meaning. Measure under each
criteria is selected which has minimum or no overlapping
with other measures. Here we are trying to avoid the
redundancy in the dynamic coupling measurement. Each
measure selected in this section will be measured in the
implementation section of this paper using real time object
oriented application.

1. The type of connection: It is mechanism by which two
classes are coupled. The coupling can be due various
mechanisms which are given in the Table 1.

TABLE I
MEASURES SELECTED FROM TYPES OF CONNECTION

Mechanism Measures
considered under
unified framework

Measures
considered in this
paper

Attribute in one
class is of another
class type

DAC, DAC´,
IFCAIC, ACAIC,
OCAIC,FCAEC,
DCAEC, OCAEC

DAC

Method in one class
has a type of
parameter of other
class type

IFCMIC, ACMIC,
OCMIC,
FCMEC,DCMEC,
OCMEC

-

Local variable of a
method of one class
is of another class
type

-

Parameter of
method of one class
is of another class
type

-

Method of one class
references attribute
of another class
type

CBO, CBO´, COF CBO, COF

Method of one class
invokes method of
another class

CBO, CBO´,
RFC�, RFC, RFC´,
MPC,COF, ICP,
NIH-ICP, IH-ICP,
OMMIC,IFMMIC,
AMMIC, OMMEC,
FMMEC,DMMEC

RFC, MPC, COF,
ICP

One class uses
another class

- -

In the Table 1 there are seven mechanisms of coupling are

given and each mechanism comprises many types of
measures. The first mechanism has DAC, DAC´ and other
component coupling type of measures. All these measures
have class-attribute interaction also DAC´ count classes used
as a type of attributes. Definition of DAC tells the same thing

(count number of attribute and parameter having a class type).
So we are considering DAC only to avoid overlapping of
measures for first mechanism. Similarly we are considering
CBO, COF, RFC, ICP measures only from the table 1 in
order avoid redundancy and overlapping of measures
between similar mechanisms.

2. Locus of impact: it is nothing but direction of request
for coupling.

Import: classes, methods, attributes in a role of client
(users).

Export: classes, methods, attributes in a role of server.

TABLE 2
IMPORT AND EXPORT COUPLING MEASURES

Direction Measures considered
under unified framework

Measures
considered in this
paper

Import CBO, CBO´, RFC�, RFC,
RFC´, MPC, DAC, DAC´,
COF, ICP, IH-ICP, NIH-
ICP, IFCAIC, ACAIC,
OCAIC, IFCMIC, ACMIC,
OCMIC, IFMMIC, AMMIC,
OMMIC

Import

Export CBO, CBO´, COF, FCAEC,
DCAEC, OCAEC, FCMEC,
DCMEC, OCMEC,
OMMEC, FMMEC,
DMMEC

Export

There are many measures under import and export
category but there should be some separate count of import
and export coupling for a class. The separate count is useful
in order to predict quality using export and import coupling.
So we are taking import and export as separate types of
measures.

3. Granularity: level of detail at which information is
gathered.

All measures considered in this category under unified
framework are already considered in other criteria measures
of this paper. So no measure is new under this criterion.

4. Stability of server class: how stable the class is.
Two different category of class stability
 Unstable Classes: these are classes which are subject

to development or modification in the project.
 Stable Classes: classes that are not subject to change

in the project.
Most of classes are unstable classes and there is no point to

consider library classes in the stability measurement. So we
are not considering any measure under this category.

5. Direct or indirect connections:
All measures considered in this paper are direct measures.

The indirect measure considered in unified framework is
RFC . The same measure we are considering here to count
indirect coupling.

6. Inheritance:
There are four options given in unified framework to deal

with inheritance. The four options are listed below.
 count inheritance-based coupling only
 count non-inheritance-based coupling only
 count inheritance-based and non-inheritance based

coupling separately
 count inheritance-based and non-inheritance based

coupling, making no distinction

V.S.Bidve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3839-3842

3840

Here we count the coupling due to inheritance only (option
1) by using option 4 and option 2. Also we are taking one
more measure i.e. depth of inheritance (DIT) which will be
useful to count maximum inheritance path from the class to
the root class [7, 3].

Polymorphism:
The second point which is more important is

polymorphism. There are many measures which accounts for
polymorphism are considered in unified framework like CBO,
CBO´, RFC∞, RFC, RFC´, COF. So we are not considering
any additional measure for polymorphism.

Apart from these measures we are considering some more
measures which are useful measures of software quality
metrics.

1. Weighted methods per class (WMC): It measures the
total number of methods defined in class. A high
WMC has been found to lead to more faults [7, 3].

2. Number of Children (NOC): Number of immediate
sub-classes of a class. High NOC has been found to
indicate fewer faults. This may be due to high reuse,
which is desirable [7, 3].

The use of each measure is already explained by previous
authors so we are not going in those details. We are directly
implementing these measurements and checking the values
using java package.

IV. CONSTRUCTION OF THE COUPLING MEASURES

 In the above section we selected required measures for the
implementation in our system. The selected measures are
formalized in this section in order to implement those
measures and in the next section of this paper. The measures
are given in the table 3.

V. SYSTEM ARCHITECTURE AND RESULTS
To implement measures described in table 4. We have

developed a java code which analyses the java packages and
find out the values of above measures. Occurrence of event
increments the value of measure by one, also an event can
have one or more aspects related with it as given in table 4.
Every measure is collected class-wise.

We have developed five chief classes in our system to find
out measurement values. The classes are given with their
functions below,

1. MetricsFilter.java: This class collects the classes from

given package.
2. ClassVisitor.java: This class works as metrics container for

all classes.
3. MethodVisitor.java: This class works as visitor of the class

the method.
4. ClassesMetrics.java: Collects details needed for calculating

a class's metrics.
5. ClassMetricsContainer.java: Store metrics of all visited

classes.
For our java project any java package can be used as an

input. Here, we are taking our project itself as input for
measurement. This project contains many packages we are
showing the result of measurement of only one package i.e.
cm.metrics package in the table 4.
Interpretation of the results
As shown in table 4 we can collect all the measures from the
definitions provided by unified framework and Chidamber &
Kemerer metrics suite. The measures which are considered
here are sufficient to predict all quality attributes. Most of the
redundant measures are avoided in this work.

TABLE 3
PROPOSED COUPLING MEASURES

Measure Events Aspects considered under measure

CBO
Methods invocation, attribute
reference.

Inheritance, import, export, polymorphism.

COF
Methods invocation, attribute
reference.

 Import, export, polymorphism.

RFC Methods invocation. Inheritance, import, polymorphism.
MPC Methods invocation. Inheritance, import.
ICP Methods invocation. Parameter passed, inheritance, import.
DAC Attribute reference. Inheritance, import.
RFC’ Methods invocation. Inheritance, import, polymorphism, indirect coupling.

IMPORT
Methods invocation, attribute
reference, class used.

Every imported event

EXPORT
Methods invocation, attribute
reference, class used.

Every exported event

Coupling due to
inheritance only

Methods invocation, attribute
reference.

Coupling due to all aspects including inheritance (count each
aspect once) – coupling due all aspects except inheritance.

DIT --------------- maximum inheritance path from the class to the root class
WMC ---------------- number of methods defined in class
NOC ------------------ number of immediate sub-classes of a class

V.S.Bidve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3839-3842

3841

TABLE 4
CLASS WISE COUNT RESULTS OF EACH MEASURE USING OUR JAVA PROJECT

↓Measure \ class →
ClassVisit-

or
Test

ClassMetrics-
Container

PrintPlain-
Result

Output-
Handler

Metrics-
Filter

Method-
Visitor

Class-
Metrics

CBO 178 0 18 3 1 40 129 0
COF 176 0 18 3 1 40 127 0
RFC 95 5 25 8 1 39 40 59
MPC 10 0 2 1 1 2 10 0
ICP 84 0 9 1 0 27 41 0
DAC 12 0 3 2 1 19 16 0
RFC’ 104 7 30 12 1 46 43 64
IMPORT 14 0 3 2 1 7 21 0
EXPORT 2 0 5 2 5 4 1 7
Coupling due to
inheritance only

2 0 0 0 0 0 2 0

DIT 3 2 2 2 2 2 3 2
WMC 18 2 5 2 1 9 11 48
NOC 0 0 0 0 0 1 0 1

VI. CONCLUSIONS AND FUTURE WORK
 In this paper, we have analyzed two coupling metrics
proposed by unified framework [paper] and Chidamber &
Kemerer. We have selected and the measures which are
sufficient to predict complexity of object-oriented software.
We have collected the class-wise values of each measure
from our code implemented in java. The values of each
measure are useful to analyze the complexity of any class.
 The paper simplified the work of coupling measurement.
The proposed metrics could be further refined by taking more
detailed formalism for each measure.

REFERENCES
[1] Abreu, F. B. e., "The MOOD Metrics Set," presented at ECOOP '95

Workshop on Metrics, 1995.
[2] Chidamber, S. R. and Kemerer, C. F., "Towards a Metrics Suite for

Object Oriented Design", in Proceedings of OOPSLA'91, 1991, pp.
197-211.

[3] S.R. Chidamber, C.F. Kemerer, “Towards a Metrics Suite for Object
Oriented design”, in A. Paepcke,(ed.) Proc. Conference on Object-
Oriented Programming: Systems, Languages and Applications
(OOPSLA’91), October 1991. Published in SIGPLAN Notices, 26
(11), 197-211, 1991.

[4] Harrison, R., Counsell, S. J., and Nithi, R. V., "An Evaluation of the
MOOD Set of Object-Oriented Software Metrics," IEEE Transactions
on Software Engineering, vol. 24, pp. 491-496, June 1998.

[5] Briand, L. C., Daly, J., and Wüst, J., "A Unified Framework for
Coupling Measurement in Object Oriented Systems", IEEE
Transactions on Software Engineering, vol. 25, no. 1, January 1999,
pp. 91-121.

[6] Briand, L. C., Devanbu, P., and Melo, W. L., "An investigation into
coupling measures for C++", in Proc. Of International Conference on
Software engineering (ICSE'97), Boston, MA, May 17-23 1997, pp.
412 - 421.

[7] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite for Object
Oriented Design", IEEE Transactions on Software Engineering, vol.
20, no. 6, 1994, pp. 476-493.

[8]] Lee, Y. S., Liang, B. S., Wu, S. F., and Wang, F. J., "Measuring the
Coupling and Cohesion of an Object-Oriented Program Based on
Information Flow", in Proceedings of International Conference on
Software Quality, Maribor, Slovenia, 1995.

[9] Gall, H., Jazayeri, M., Krajewski, J., "CVS Release History Data for
Detecting Logical Couplings", 6th International Workshop on
Principles of Software Evolution (IWPSE'03) Sept. 1 - 2, 2003, pp. 13
- 23.

[10] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S., "Mining
Version Histories to Guide Software Changes", IEEE Transactions on
Software Engineering, vol. 31, no. 6, June 2005, pp. 429-445.

[11] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic coupling
measurement for object-oriented software", IEEE Transactions on
Software Engineering, vol. 30, no. 8, August 2004, pp. 491-506.

[12] Kramer, S. and Kaindl, H., "Coupling and cohesion metrics for
knowledge-based systems using frames and rules", ACM Trans. on
Soft. Engineering and Methodology (TOSEM), vol. 13, no. 3, July
2004, pp. 332-358.

[13] Zhao, J., "Measuring Coupling in Aspect-Oriented Systems", in Proc.
of 10th IEEE International Soft. Metrics Symposium (METRICS'04),
Chicago, USA, 2004.

[14] Li, W. and Henry, S., "Object-oriented metrics that predict
maintainability", Journal of Systems and Software, vol. 23, no.
2, 1993, pp. 111-122

[15] Basili, V. R., Briand, L. C., and Melo, W. L., "A Validation of Object
Orient Design Metrics as Quality Indicators," IEEE Transactions on
Software Engineering, vol. 21, pp. 751-761, 1996.

[16] Briand, L., Emam, K. E., and Morasca, S., "Theoretical and Empirical
Validation of Software Metrics," 1995.

[17] Briand, L., Ikonomovski, S., Lounis, H., and Wust, J., "Measuring the
Quality of Structured Designs," Journal of Systems and Software, vol.
2, pp. 113-120, 1981.

[18] Schneidewind, N. F., "Methodology for Validating Software Metrics,"
IEEE Transactions on Software Engineering, vol. 18, pp. 410-422,
1992.

[19] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach.
Wokingham, England: Addison-Wesley, 1992.

[20] Korson, T. D. and Vaishnavi, V. K., "An Empirical Study of
Modularity on Program Modifiability," Empirical Studies of
Programmers, pp. 168-86, 1986.

AUTHORS
V. S. Bidve: Computer engineering from University
of Aurangabad and the M. Tech pursuing from
BVUCOE, Pune. He has nine years of teaching
experience in Pune and Mumbai. He is now working
as a lecturer in the Department of information
technology SKNCOE, Pune.

A. R. Khare: Has completed bachelor degree in
computer engineering from Bhopal University, India
and M. Tech. from same University. Pursuing Ph. D.
from JNU, Jodhpur In the field of computer
engineering. Working as Assistance Professor in
Information Technology Department of BVCOE,
Pune. Having 10+ years of teaching experience.

Working as a PG coordinator for IT department and guiding number of
students for their project work and various academic activities.

V.S.Bidve et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3839-3842

3842

